Author: Nikoletta Triantafyllopoulou

Google Summer of Code 2020: Announcing the two projects we will be mentoring

For the second year in a row, Libre Space Foundation was selected as a mentor organisation for the Google Summer of Code initiative. The application period has closed and the results are in, and so it is with great excitement that we announce the two projects we will be mentoring over the next few months.

The Projects

The first project titled “Deep learning for Cubesat Behavior Segmentation with Collection of Contextual Information” will be working on the Polaris codebase. The project aims at supporting spacecraft operators by predicting the behaviour of their satellites and linking it to various data sources. There is a data challenge in collecting and sometimes in converting into time series. This data collection phase will allow for better information when understanding and estimating the behaviour of a spacecraft. External sources of data, namely, orbit propagation, solar and magnetic events, and various elements of space weather, will be some of the external sources providing the data needed. The machine learning approach employed for Polaris will transform these data sources into learning features so that a spacecraft’s behaviour is not only predicted but also explained by the “machine”. Deep learning means that the project is exploring the usage of different neural network architectures of several layers. The project is undertaken in close collaboration with the amazing team of the Polaris project.

The second project that Libre Space Foundation will be mentoring is a “Python Module for RF Collisions”. This project’s goal is to tackle an issue that troubles satellite observers quite frequently. With the number of deployed satellites in constant increase, it is often that satellites transmit with the same or near frequencies. This overlapping of frequencies interferes with the results of the observations and affects their accuracy. Thus, the project we will be mentoring aims at dealing with this exact issue. By building a Python module that will allow the ground station operators to specify the time and the location this interference occurs. This project is closely related and linked to SatNOGS and it will be used by the SatNOGS network as an internal or an external tool to let the observers know which other satellites are expected to be found in the results of their observations.

Google Summer of Code is an annual program offering university students the opportunity to work on open-source projects during their summer break while earning a stipend! Libre Space Foundation is devoted to working on open-source space technologies and you can find out more about our Principles regarding open-source and space in our Manifesto.

This year’s Google Summer of Code application period has been indeed a groundbreaking one as the initiative received 8,902 applications submitted by 6,626 students from 121 countries. These applications were reviewed by 199 mentoring organizations. Eventually, 1,199 students from 66 countries were selected. We are thrilled to be part of this grand initiative. But we are also excited and looking forward to working with our students over the next few months. Congratulations to everyone and welcome aboard!

The QUBIK Project: The progress so far

Libre Space Foundation is devoted to the vision of open-source technologies in space, and for this, we often join forces with researchers, individuals, and teams who share this vision with us. One exciting project we have taken up is the QUBIK Project.

QUBIK-1 Flight-ready
QUBIK-1 flight-ready

A few words about the Project

Our love for space has brought us in collaboration with Firefly Aerospace and the DREAM payloads program. This is a global competition to host academic and educational payloads as rideshare participants on the inaugural flight of the Firefly Alpha launch vehicle. For this project, we have been working together with FOSSA Systems and AMSAT EA. We have developed two PocketQube satellites, QUBIK-1 and QUBIK-2, and PICOBUS, a PocketQube deployer.

GENESIS N, FOSSASAT-1B, GENESIS L, PICOBUS-2, PICOBUS-1, FOSSASAT-2
From top left clock-wise: GENESIS N, FOSSASAT-1B, GENESIS L, QUBIK-2, QUBIK-1, FOSSASAT-2
PICOBUS deployer with satellites integrated
PICOBUS deployer with satellites integrated

The satellites are expected to have a short lifespan of up to 3 weeks of orbit. Regardless of how short-lived they will be, though, they are built to perform a range of communications experiments. While those experiments will be taking place, the SatNOGS network of ground stations will be receiving signals from these satellites. By exploiting Doppler Variations, the network of ground stations will perform orbit determination and satellite identification as early as possible. This will utilize the benefits and the capabilities of the SatNOGS network to the fullest and demonstrate the Space Situational Awareness aspect of it.

How the Project has been progressing for the last few months

On the 12th of December 2019, the thermal vacuum test for the PICOBUS took place at Instituto Nacional de Técnica Aeroespacial, and on the 16th of the same month, the vibration test was conducted at the NanoSat Lab of the Polytechnic University of Catalunya. A few months later, on the 8th of February 2020, our team working at Hackerspace.gr completed the assembly of the PICOBUS and QUBIK-1 and QUBIK-2. The next day marked the bake out day for the project at the Institute of Electronic Structure and Laser. Lastly, on the 12th of February 2020, at the NanoSat Lab, the vibration acceptance campaign took place for PICOBUS, and so did the Protoflight campaign for QUBIK-1 and QUBIK-2. At this point in the process, the software is being developed so that the project will be able to facilitate all the experiments that need to be carried out.

Qualification model of PICOBUS deployer getting ready for Thermal-Vacuum testing
Qualification model of PICOBUS deployer getting ready for Thermal-Vacuum testing
Qualification model of PICOBUS deployer just out of the Thermal-Vacuum chamber
Qualification model of PICOBUS deployer just out of the Thermal-Vacuum chamber
Flight model of PICOBUS deployer during vibration testing
Flight model of PICOBUS deployer during vibration testing
Deployment test of dummy mass satellites from PICOBUS deployer

QUBIK-1, QUBIK-2, and the PICOBUS deployer form an exciting project for which we have worked hard, and we have collaborated with inspiring teams. As the development draws to completion we are excited to see what this project will achieve.

If you find this project exciting too and you wish to find out more about Qubik you can follow the open-source repositories of the project.