Tag: Qubik

LSF head back to Orbit with the Qubik Mission

Libre Space Foundation is proud to announce that it is currently developing and integrating 2 pocketqube satellites (QUBIK-1 & QUBIK-2) and supplying a pocketqube deployer (PICOBUS) to be flown as part of the DREAM payloads program on the inaugural Firefly Alpha launch from Firefly Aerospace. 

An exploded view of the QUBIK satellites

Scheduled for launch around the end of the first quarter 2020 we are delighted to be taking part in this exciting mission. 

QUBIK mockup inside the clean box

The LSF contributors have been busy developing both the pocketqubes from scratch as well as the innovative deployment system that features a constant force spring design and, of course, all developments are being carried out using open source methodologies and licenses.

The satellites are expected to be short-lived with only ~3 weeks of predicted orbit lifespan. This short timeframe will be enough though for the communications experiment they are tasked to perform. Specifically, the satellites will be conducting a series of telecommunication related experiments, while at the same time, ground station analysis of the received signals will try to exploit doppler variations in order to perform orbit determination and satellite identification from radio amateur stations around the world. The telecommunication experiments will use several different modulation, coding and framing schemes, with the intention to provide insights about their performance at nano-pico-satellite missions. In addition, the frame itself will be organized in such a way so spacecraft identification can be performed as early as possible from the physical layer.

The brains of the QUBIK satellites will be the open source pocketqube format Communications board designed by LSF

You can follow along with the progress of our development in the relevant repositories or subscribe to Libre Space Foundation channels (LSF Forum Twitter Facebook ) for updates!

QUBIK spinning on Earth before it gets to spin in orbit!

It’s a tight timeframe of only 4 months from inception to delivery and the team is working incredibly hard to design, build and test all the parts for this mission while being on track to deliver the satellites and deployer on time for integration and ready for launch, helping us further our mission to claim space the libre way.

Per Liberum, Ad Astra!

QUBIK Engineering model inside LSF cleanbox

The QUBIK Project: The progress so far

Libre Space Foundation is devoted to the vision of open-source technologies in space, and for this, we often join forces with researchers, individuals, and teams who share this vision with us. One exciting project we have taken up is the QUBIK Project.

QUBIK-1 Flight-ready
QUBIK-1 flight-ready

A few words about the Project

Our love for space has brought us in collaboration with Firefly Aerospace and the DREAM payloads program. This is a global competition to host academic and educational payloads as rideshare participants on the inaugural flight of the Firefly Alpha launch vehicle. For this project, we have been working together with FOSSA Systems and AMSAT EA. We have developed two PocketQube satellites, QUBIK-1 and QUBIK-2, and PICOBUS, a PocketQube deployer.

GENESIS N, FOSSASAT-1B, GENESIS L, PICOBUS-2, PICOBUS-1, FOSSASAT-2
From top left clock-wise: GENESIS N, FOSSASAT-1B, GENESIS L, QUBIK-2, QUBIK-1, FOSSASAT-2
PICOBUS deployer with satellites integrated
PICOBUS deployer with satellites integrated

The satellites are expected to have a short lifespan of up to 3 weeks of orbit. Regardless of how short-lived they will be, though, they are built to perform a range of communications experiments. While those experiments will be taking place, the SatNOGS network of ground stations will be receiving signals from these satellites. By exploiting Doppler Variations, the network of ground stations will perform orbit determination and satellite identification as early as possible. This will utilize the benefits and the capabilities of the SatNOGS network to the fullest and demonstrate the Space Situational Awareness aspect of it.

How the Project has been progressing for the last few months

On the 12th of December 2019, the thermal vacuum test for the PICOBUS took place at Instituto Nacional de Técnica Aeroespacial, and on the 16th of the same month, the vibration test was conducted at the NanoSat Lab of the Polytechnic University of Catalunya. A few months later, on the 8th of February 2020, our team working at Hackerspace.gr completed the assembly of the PICOBUS and QUBIK-1 and QUBIK-2. The next day marked the bake out day for the project at the Institute of Electronic Structure and Laser. Lastly, on the 12th of February 2020, at the NanoSat Lab, the vibration acceptance campaign took place for PICOBUS, and so did the Protoflight campaign for QUBIK-1 and QUBIK-2. At this point in the process, the software is being developed so that the project will be able to facilitate all the experiments that need to be carried out.

Qualification model of PICOBUS deployer getting ready for Thermal-Vacuum testing
Qualification model of PICOBUS deployer getting ready for Thermal-Vacuum testing
Qualification model of PICOBUS deployer just out of the Thermal-Vacuum chamber
Qualification model of PICOBUS deployer just out of the Thermal-Vacuum chamber
Flight model of PICOBUS deployer during vibration testing
Flight model of PICOBUS deployer during vibration testing
Deployment test of dummy mass satellites from PICOBUS deployer

QUBIK-1, QUBIK-2, and the PICOBUS deployer form an exciting project for which we have worked hard, and we have collaborated with inspiring teams. As the development draws to completion we are excited to see what this project will achieve.

If you find this project exciting too and you wish to find out more about Qubik you can follow the open-source repositories of the project.